Email Spam Filtering: A Systematic Review

نویسنده

  • Gordon V. Cormack
چکیده

Spam is information crafted to be delivered to a large number of recipients, in spite of their wishes. A spam filter is an automated tool to recognize spam so as to prevent its delivery. The purposes of spam and spam filters are diametrically opposed: spam is effective if it evades filters, while a filter is effective if it recognizes spam. The circular nature of these definitions, along with their appeal to the intent of sender and recipient make them difficult to formalize. A typical email user has a working definition no more formal than “I know it when I see it.” Yet, current spam filters are remarkably effective, more effective than might be expected given the level of uncertainty and debate over a formal definition of spam, more effective than might be expected given the state-of-the-art information retrieval and machine learning methods for seemingly similar problems. But are they effective enough? Which are better? How might they be improved? Will their effectiveness be compromised by more cleverly crafted spam? We survey current and proposed spam filtering techniques with particular emphasis on how well they work. Our primary focus is spam filtering in email; Similarities and differences with spam filtering in other communication and storage media — such as instant messaging Full text available at: http://dx.doi.org/10.1561/1500000006

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning for E-mail Spam Filtering: Review, Techniques and Trends

We present a comprehensive review of the most effective content-based e-mail spam filtering techniques. We focus primarily on Machine Learning-based spam filters and their variants, and report on a broad review ranging from surveying the relevant ideas, efforts, effectiveness, and the current progress. The initial exposition of the background examines the basics of e-mail spam filtering, the ev...

متن کامل

An efficient incremental learning mechanism for tracking concept drift in spam filtering

This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email's header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these asso...

متن کامل

Trends in Combating Image Spam E-mails

With the rapid adoption of Internet as an easy way to communicate, the amount of unsolicited e-mails, known as spam e-mails, has been growing rapidly. The major problem of spam e-mails is the loss of productivity and a drain on IT resources. Today, we receive spam more rapidly than the legitimate e-mails. Initially, spam e-mails contained only textual messages which were easily detected by the ...

متن کامل

Using Case-Based Reasoning for Spam Filtering

Spam is a universal problem with which everyone is familiar. Figures published in 2005 state that about 75% of all email sent today is spam. In spite of significant new legal and technical approaches to combat it, spam remains a big problem that is costing companies meaningful amounts of money in lost productivity, clogged email systems, bandwidth and technical support. A number of approaches a...

متن کامل

Feature Weight Optimization Mechanism for Email Spam Detection based on Two-Step Clustering Algorithm and Logistic Regression Method

This research proposed an improved filtering spam technique for suspected emails, messages based on feature weight and the combination of two-step clustering and logistic regression algorithm. Unique, important features are used as the optimum input for a hybrid proposed approach. This study adopted a spam detector model based on distance measure and threshold value. The aim of this model was t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations and Trends in Information Retrieval

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2006